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Abstract

We propose and study an adaptive version of the discontinuous Galerkin method for Hamilton–Jacobi equations. It
works as follows. Given the tolerance and the degree of the polynomial of the approximate solution, the adaptive algo-
rithm finds a mesh on which the approximate solution has an L1-distance to the viscosity solution no bigger than the pre-
scribed tolerance. The algorithm uses three main tools. The first is an iterative solver combining the explicit Runge–Kutta
discontinuous Galerkin method and the implicit Newton’s method that enables us to solve the Hamilton–Jacobi equations
efficiently. The second is a new a posteriori error estimate based on the approximate resolution of an approximate problem
for the actual error. The third is a method that allows us to find a new mesh as a function of the old mesh and the ratio of
the a posteriori error estimate to the tolerance. We display extensive numerical evidence that indicates that, for any given
polynomial degree, the method achieves its goal with optimal complexity independently of the tolerance. This is done in the
framework of one-dimensional steady-state model problems with periodic boundary conditions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We introduce and study an adaptive method that can efficiently compute an approximation, with a guar-
anteed precision set beforehand by the practitioner, to the viscosity solution of the model steady-state
Hamilton–Jacobi equation,
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where the function f is periodic of period one. The method finds, for any given tolerance s and any fixed poly-
nomial degree k, a grid Gh such that
ku� uhkL1ðGhÞ 6 s;
where the grid Gh is a refinement of the grid Gh. Here, uh is the approximation given by the discontinuous
Galerkin (DG) method using polynomials of degree k proposed by Hu and Shu [7]. In this paper, we display
extensive numerical evidence indicating that this adaptive algorithm actually reaches its goal with optimal
complexity.

This method can be considered a nontrivial extension to the DG method of the adaptive method introduced
by Cockburn and Yenikaya [4,5] for monotone schemes. Indeed, our algorithm has a similar structure,
namely,

(i) Construct an initial grid Gh.
(ii) Compute the DG approximate solution uh on the grid Gh.

(iii) Compute the estimate of the error, Uh(uh).
(iv) If kUhðuhÞkL1ðGhÞ 6 s, stop.
(v) If not, compute a new grid Gh and go to Step (ii).

On the other hand, the fact that the approximate solution uh is not given by a monotone scheme forced us
to replace the a posteriori error estimate used in [4,5] by a new one. The a posteriori error estimate used therein
was obtained by Albert et al. [1] and worked very well on monotone schemes. It also worked well on DG
methods provided the mesh was uniform and a suitable post-processing was applied to the solution before eval-
uating the a posteriori error. In fact, if such a post-processing is not used, the ratio of the a posteriori error
estimate to the true error grows like (Dx)�1 where Dx is the maximum mesh size, instead of staying close to the
optimal value of one. In contrast, for the new a posteriori error estimate, that ratio remains constant and fairly
close to one, uniformly with respect to the grid, the polynomial degree and the tolerance.

The adaptive method we study here is able to achieve a strict error control with optimal complexity uni-
formly in the tolerance s and the polynomial degree k of the approximation even in the presence of kinks
in the viscosity solution. It is the first adaptive method with these properties for the Hamilton–Jacobi
equations.

Let us illustrate how the adaptive method works by displaying its approximate solution for the cases:
HðpÞ ¼ p3

8p3
; f ðxÞ ¼ sinð2pxÞ þ cos3ð2pxÞ
and
HðpÞ ¼ p2

p2
; f ðxÞ ¼ � sin p x� p

4

� �� ���� ���þ cos2 p x� p
4

� �� �
:

The first problem has a smooth solution u(x) = sin(2px) while the viscosity solution of the second,
uðxÞ ¼ �j sinðpðx� p

4
ÞÞj, has a kink at p

4
.

The results for the first problem with a tolerance s = 10�6 and polynomial degree k = 1,2,3,4 are displayed
in Fig. 1 where we plot the approximate solutions on the meshes generated by the method. We see that the
number of intervals we need to achieve this accuracy decreases dramatically as we increase the polynomial
degree, as expected. If we recall that it takes 120, 749 intervals for a monotone scheme (which corresponds
to taking k = 0 in the DG method) to obtain an accuracy of 10�4 for the same problem, see [4], we see that
the use of high-degree polynomials is highly advantageous.

The results for the second problem are shown in Fig. 2. Note that in this case, when the solution has kinks,
the adaptive method automatically identifies a region around the kink where it uses piecewise constant
approximations; elsewhere, it uses polynomials of degree k. We see that, as it is typical of DG methods,
the increase of the degree of polynomial approximation does not result in the degradation of the overall
approximation; the reasonably good resolution of the kink is also maintained. Unfortunately, we see that
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Fig. 1. The approximate solution uh (solid line) generated by the method with s = 10�6 for the first test problem. The polynomial degree
for the approximation of ux is denoted by k and the number of elements by N. The value of the approximate solution at the midpoints of
the elements is plotted with dark circles.
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Fig. 2. The approximate solution uh (solid line) generated by the method with s = 10�4 for the second test problem. The polynomial
degree for the approximation of ux is denoted by k and the number of elements by N. The value of the approximate solution at the
midpoints of the elements is plotted with dark circles.
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the number of intervals does not monotonically decrease as the polynomial degree k increases. In particular,
we need more elements for the k = 4 case than the k = 3 case. This differs from what happens when the solu-
tion is smooth. Indeed, as we see in Fig. 1, the higher the order of the scheme, the fewer the number of ele-
ments we need. This might be improved by using a better, rigorous a posteriori error estimate. Nonetheless,
note that, with the current strategy, we do capture the kink better when the polynomial degree is higher. In
contrast, when monotone schemes are used, an enormous number of intervals is required to achieve a given
same accuracy. For example, in [4], 40, 148 intervals were needed when working with a tolerance of s = 10�4.

The paper is organized as follows. In Section 2, we describe each of the main three ingredients of the
method, namely, the iterative solver to solve the nonlinear system resulting from the DG method of Hu
and Shu [7], the new a posteriori error estimate, and the way of computing a new grid in terms of the old grid
and the information given by the ratio of the a posteriori error estimate to the tolerance. In Section 3, we carry
out a thorough numerical study on six, qualitatively different test problems; we show that the new a posteriori
error estimate is sharp and the adaptive method is effective and robust. Finally, we end in Section 4 with some
concluding remarks.
2. The adaptive method

In this section, we briefly describe the exact solution we seek to approximate, namely, the viscosity solution
of the Hamilton–Jacobi equations. We then describe the adaptive algorithm in full detail: First, we display the
DG method, then the a posteriori error estimate and finally, how to compute a new mesh. We end with a brief
summary of the adaptive method.

2.1. The viscosity solution

To state the definition of the viscosity solution of (1.1), we need the notion of semi-differentials of a func-
tion. The superdifferential of a function u at a point x, D+u(x), is the set of all vectors p in R such that
lim sup
y!x

uðyÞ � fuðxÞ þ ðy � xÞ � pg
jy � xj

� �
6 0
and the subdifferential of a function u at a point x, D�u(x), is the set of all vector p in R such that
lim inf
y!x

uðyÞ � fuðxÞ þ ðy � xÞ � pg
jy � xj

� �
P 0:
We also need to define the following quantity:
Rðu; x; pÞ ¼ uðxÞ þ HðpÞ � f ðxÞ;

which is just the residual of u at x if p = ux(x).

We are now ready to define the viscosity solution of (1.1).

Definition 2.1 [6]. The viscosity solution of the Hamilton–Jacobi equation (1.1) is a continuous periodic
function on R such that, for all x in R,
þRðu; x; pÞ 6 0 8p 2 DþuðxÞ; and � Rðu; x; pÞ 6 0 8p 2 D�uðxÞ:
2.2. Discontinuous Galerkin schemes

Next, we adapt the discontinuous Galerkin Runge–Kutta method of Hu and Shu [7], originally devised for
transient Hamilton–Jacobi problems, to our steady state setting. Roughly speaking, the idea is first to obtain
u = ux, which solves the scalar hyperbolic conservation law
uþ HðuÞx ¼ fx
and then compute u by the formula
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uðxÞ ¼ f ð0Þ � Hðuð0ÞÞ þ
Z x

0

uðsÞ:
Notice that we are using the equation u = f � H(ux) to define the value of u at x = 0.
To obtain the approximation uh to u, we proceed as follows. By the periodicity of the problem (1.1),

we only need to solve it on the interval (0,1). Given any grid Gh ¼ fxigN
i¼0, where 0 = x0 < x1 < � � �

< xN = 1, we set Ij = (xj,xj + 1), hj = xj + 1 � xj, j = 0, . . .,N � 1. Then, on the interval Ij, the approximate
solution uh is defined as the element of P kjðI jÞ, the space of polynomials of degree at most kj defined
on Ij, such that
Z xjþ1

xj

ðuhv� HðuhÞvx � fxvÞdxþ bH jþ1vðx�jþ1Þ � bH jvðxþj Þ ¼ 0; ð2:1aÞ
8v 2 P kjðIjÞ, where
bH ða; bÞ ¼ 1

2
½HðaÞ þ HðbÞ � Cðb� aÞ�; ð2:1bÞ
and
C ¼ max
fs2½0;1�:uxðsÞ existsg

jH 0ðuxðsÞÞj: ð2:1cÞ
Finally, our approximate solution is given by
uhðxÞ ¼ f ð0Þ � bH 0 þ
Z x

0

uhðsÞds:
Next, we describe the iterative solver of Eq. (2.1).
2.3. The iterative solver

The iterative method to solve our equations has three major components. The first is the Newton’s method
with which we are going to generate a sequence converging to the solution. It is well known that the conver-
gence of Newton’s method takes place only if the initial guess should be close enough to the solution. To pro-
vide such initial guess, we are going to use the second component of the iterative solver which is nothing but
the RKDG method. The third component is a special procedure that will allow us to deal with the high-order
nature of the solution. This solver is a nontrivial extension of the solver used in [1] and in [4,5] for monotone
schemes.

To be able to describe the solver, we need to introduce some notation. We are going to describe the form
that the approximate solution uh has by simply saying that uh 2 Vh,k(Gh), where, for Gh ¼ fxigN

i¼0 and
Ij = (xj,xj + 1),
V h;kðGhÞ :¼ fv 2 L2ð0; 1Þ : vjIj
2 P kjðIjÞ 8j ¼ 0; . . . ;N � 1g; ð2:2Þ
where k :¼ (k0,k1, . . .,kN� 1). In what follows, we use the notation k‘ :¼ (‘, ‘, . . ., ‘) and we use Vh,k instead of
Vh,k(Gh) for simplicity if there is no confusion.

We can now introduce the projection P‘, from Vh,k with kj 6 ‘ for j = 0, . . .,N � 1 to V h;k‘ : for any function
/ 2 Vh,k, we define P‘/ 2 V h;k‘ by requiring that, for any j = 0, . . .,N � 1 and any polynomial v of degree ‘
Z

Ij�1[Ij[Ijþ1

ðEjðP‘/Þ � /Þvdx ¼ 0;
where the function EjðP‘/Þ is the natural extension of P‘/jIj
to Ij� 1 [ Ij [ Ij + 1. Notice that, by periodicity,

I�1 :¼ IN� 1 and IN :¼ I0.
We denote the degrees of freedom of uh 2 Vh,k by ~uh :¼ ð~uh;0;~uh;1; . . . ;~uh;N�1Þ; where ~uh;j :¼

ðuj
0;u

j
1; . . . ;uj

kj
Þ are the degrees of freedom of ujIj

. Then, Eq. (2.1a) can be rewritten as the following nonlinear
system of equations for ~uh:
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Fð~uhÞ ¼ 0:
It is well known that the DG method described above with k = k0 gives rise to a well defined monotone
scheme; see [2]. In this paper, we do not address the issue of the existence and uniqueness of the approximate
solution for arbitrary k. However, we devise an iterative algorithm that does converge in practice; it is a com-
bination of Newton’s method and the RKDG method.

The iteration given by Newton’s method is
Nð~uðmÞh Þ :¼ ~uðmÞh � F0ð~uðmÞh Þ
� ��1

� Fð~uðmÞh Þ:
It is reasonable to believe that the Newton’s method will converge to the desired solution provided we use
piecewise constant approximations wherever the exact solution is not smooth. The identification of such a
region is a crucial part of our iterative method. Such a region is determined by information provided by
the slope limiter of the RKDG method. We use the RKDG method exactly as described in [7]; see [3] for a
detailed description. In what follows, we denote the degrees of freedom obtained by applying one RKDG step
by RKDGð~uhÞ.

Finally, we are going to use two operators with which we are going to determine the space of the solution
we are seeking. The introduction of these operators is motivated by the well known fact that the use of piece-
wise-constant approximations around the kinks can ensure the absence of unphysical spurious oscillation in
the approximate solution. Both operators are related to the slope limiter used by the RKDG method, KPh

which is going to be described later, and make sure that those unphysical spurious oscillations are damped.
The image of the first operator K :¼ SLD(uh,k), where k :¼ (k0,k1, . . .,kN� 1), is defined by
Kj :¼
0 if KPhuhjIj

¼ �uhjj;
kj otherwise:

�
ð2:3Þ
The image of the second operator K :¼ PD(uh,k, ‘), where k :¼ (k0,k1, . . .,kN� 1) and ‘ is an integer, is
defined by
Kj :¼

0 if KPhuhjIj
¼ �uhjj or there exist j1 6 j and j2 P j such that

k‘ ¼ 0 for ‘ 2 fj1; . . . ; j2g and

KPhuhjI‘ ¼ �uhj‘ for ‘ 2 fj1 � 1; j2 þ 1g;
‘ otherwise:

8>>><>>>: ð2:4Þ
We are now ready to describe the iterative solver.
Given a polynomial degree k and a grid Gh, the iterative solver finds a space Vh,k and a solution uh 2 Vh,k of

Eq. (2.1) as follows:

Algorithm 1. (Iterative solver)

(i) Initialization:
(a) Set ‘ = 0.
(b) Initialize ~uð0Þh 2 V h;k‘ by zero.
(c) Set the flow control parameter � to 10�3.

(ii) Computation of an initial guess for Newton’s method:
(a) Set k

ð0Þ
RK :¼ k‘ and m :¼ 0.

(b) Given the function ~uðmÞh 2 V
h;kðmÞ

RK

, compute the next iterate ~uðmþ1Þ
h 2 V

h;kðmþ1Þ
RK

, where k
ðmþ1Þ
RK :¼

SLDðuðmÞh ; k
ðmÞ
RKÞ by using the RKDG method:
~uðmþ1Þ
h :¼ RKDGð~uðmÞh Þ:
(c) Evaluate e :¼ k~uðmþ1Þ
h �~uðmÞh k‘1 and proceed as follows:
(1) If e 6 �, the initial guess for Newton’s method is

~uð1Þh :¼ P‘~uðmþ1Þ
h ;
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and the associated vector of polynomial degrees is
k
ð1Þ
RK :¼ PDð~uð1Þh ; k

ðmþ1Þ
RK ; ‘Þ:

(2) Otherwise, go to step (b).
(iii) Computation of the iterates of Newton’s method:
(a) Set kNT :¼ k‘ and m :¼ 1.
(b) Given the function ~uðmÞh 2 V h;kNT

, compute the next iterate ~uðmþ1Þ
h 2 V h;kNT

by using Newton’s method:
~uðmþ1Þ
h :¼ Nð~uðmÞh Þ:
(c) Evaluate e :¼ kFð~uðmþ1Þ
h Þk‘1 and proceed as follows:

(1) If e 6 10�14, we consider ~uðmþ1Þ
h to be the solution of the nonlinear system with polynomials of

degree ‘. Then
(a) If ‘ = k, we consider ~uðmþ1Þ

h to be the solution we seek and stop.
(b) Otherwise, we consider ~uðmþ1Þ

h as the initial guess for the Newton’s method for solving the
nonlinear system with polynomials of degree ‘ + 1. Thus, we set ~uð1Þh :¼ P‘þ1~uðmþ1Þ

h ,
� :¼ 2 · 10�3, ‘ :¼ ‘ + 1 and go to step (a).

(2) If e > 10�14 and m < 10, set m :¼ m + 1 and go to step (b) to compute another iterate.
(3) If e > 10�14 and m = 10, then

(a) If kNT = k‘ and ‘ > 0, we consider that the space V h;kNT
was not suitable for the compu-

tations; we change it and begin anew. Thus, we set kNT :¼ k
ð1Þ
RK, m :¼ 1 and go to step (b).

(b) Otherwise, we consider that the initial guess ~uð1Þh obtained by using the RKDG method in
step (ii) is not suitable and we go back to that step to obtain a better guess. Thus, we set
~uð0Þh :¼ ~uð1Þh , � :¼ �/2, and go to step (ii).

We can see that, the iterative solver uses the explicit RKDG method to advance to a point that is close
enough to the solution of (2.1a) and then switches to using Newton’s method to try to achieve a much
faster convergence. We can also see that, to find the approximate solution associated with the polynomial
degree k, we do obtain the solutions associated with the degree ‘ for ‘ = 0, . . .,k. The reason is that the
solution associated with the degree ‘ provides a good initial guess to compute the solution associated with
the degree ‘ + 1. In our experience, this algorithm is very efficient and it only takes a few Newton itera-
tions to converge. In the presence of kinks with nonconvex Hamiltonian and for meshes with elements of
very different sizes, the algorithm takes significantly longer time to converge as the Newton’s method
requires an initial guess that is very close to the solution. Obtaining such an initial guess via the RKDG
method is time-consuming since the size of the time step is very small when the mesh is extremely fine on
part of the domain around the kink.

To complete the description of the iterative solver, we still have to describe the slope limiter we use. It is
similar to the generalized slope limiter KPh considered in [3]. To describe it, we need the following notation.
For any function uh 2 Vh,k, we set� �
ðKPhvhÞ�jþ1 ¼ �vj þ
1

2
hjm

v�jþ1 � �vj

hj=2
;

�vjþ1 � �vj

ðhj þ hjþ1Þ=4
;

�vj � �vj�1

ðhj�1 þ hjÞ=4
; ð2:5aÞ

ðKPhvhÞþj ¼ �vj �
1

2
hjm

�vj � vþj
hj=2

;
�vjþ1 � �vj

ðhj þ hjþ1Þ=4
;

�vj � �vj�1

ðhj�1 þ hjÞ=4

� �
; ð2:5bÞ
where �vj :¼ 1
hj

R xjþ1

xj
vdx and the minmod function m is defined by8
mða1; a2; a3Þ ¼
a1; if ja1j 6 2Mhj;

s min
16n63

janj; else if s ¼ signða1Þ ¼ signða2Þ ¼ signða3Þ;

0; else:

><>:

Assuming that the parameter M is known, the slope limiter is defined as follows.
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Algorithm 2. (Slope limiter operator KPh).
Given uh, for j = 0,1, . . .,N � 1, we define KPhuhjIj

by

(i) Compute ðKPhuhÞ
�
jþ1 and ðKPhuhÞ

þ
j by using (2.5a) and (2.5b).

(ii) If u�hjþ1 ¼ ðKPhuhÞ
�
jþ1 and uþhj ¼ ðKPhuhÞ

þ
j , set KPhuhjIj

¼ uhjIj
. If not, set KPhuhjIj

¼ �uhjj.

This completes the description of step (ii) of Algorithm 1 for the iterative solver.
It remains to show how to compute the parameter M. It is not difficult to see that M is nothing but an

upper bound of the absolute value of the second-order derivative of the solution at local extrema. Given an
approximation to the exact solution, uH

h , we compute M ¼ MðuH

h Þ as follows.

Algorithm 3. (Computation of M(uh)).

(i) For each interval Ii+1, i = 0,1, . . .,N � 1, compute the parabola pi
uh
ðxÞ determined by the conditions
pi
uh
ðxi�1=2Þ ¼ �uhi�1;

pi
uh
ðxiþ1=2Þ ¼ �uhi;

pi
uh
ðxiþ3=2Þ ¼ �uhiþ1;

where xj+1/2 is the midpoint of the interval Ij.

(ii) For each interval Ii+1, i = 0,1, . . .,N � 1, set Mi = 0. If any of the following conditions holds:

(1) �uhi > Maxf�uhi�1; �uhiþ1g and 1� Mi�1þMiþ1

2Mi

��� ��� < 0:05,

(2) �uhi < Minf�uhi�1; �uhiþ1g and 1� Mi�1þMiþ1

2Mi

��� ��� < 0:05,

set Mi ¼ pi
uh

00
��� ���.

(iii) Set M(uh) = Max{M0,M1, . . .,MN�1}.

The second part of the condition (1) or (2) is a practical way to differentiate critical points from disconti-
nuities. It is motivated by the following computation. Assuming u(x) is smooth, we have the following Taylor
expansions:
uðxjþ1Þ ¼ uðxjÞ þ hu0ðxjÞ þ
h2

2
Mj þ

h3

6
NþOðh4Þ

uðxjÞ ¼ uðxjþ1Þ � hu0ðxjþ1Þ þ
h2

2
Mjþ1 �

h3

6
NþOðh4Þ

uðxj�1Þ ¼ uðxjÞ � hu0ðxjÞ þ
h2

2
Mj �

h3

6
NþOðh4Þ

uðxjÞ ¼ uðxj�1Þ þ hu0ðxj�1Þ þ
h2

2
Mj�1 þ

h3

6
NþOðh4Þ
Here, Mj = u00(xj), Mj + 1 = u00(xj + 1), Mj� 1 = u00(xj� 1) and we assume u000ðxj�1Þ ¼ u000ðxjÞ ¼ u000ðxjþ1Þ ¼N.
Adding the four equations expanding u00(xj + 1) and u00(xj� 1) at xj to obtain
1�Mjþ1 þMj�1

2Mj
¼ Oðh2Þ:
Of course, the question is now how to obtain such an approximation uH

h . In our experience, it is enough to
take uH

h as the solution associated to a uniform grid of 20 elements and a space of piecewise linear approxi-
mations. Of course, we cannot use Algorithm 1 to do that, but we can use a very similar procedure we describe
next.
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Algorithm 4. (Computation of uH

h ).

(i) Initialization:
(a) Set ‘ = 0.
(b) Initialize ~uð0Þh 2 V h;k‘ by zero.
(c) Set the flow control parameter � to 10�3.

(ii) Computation of an initial guess for Newton’s method:
(a) Set k

ð0Þ
RK :¼ k‘ and m :¼ 0.

(b) Given the function ~uðmÞh 2 V
h;kðmÞ

RK

, compute the next iterate ~uðmþ1Þ
h 2 V

h;kðmþ1Þ
RK

, where k
ðmþ1Þ
RK :¼

SLDðuðmÞh ; k
ðmÞ
RKÞ by using the RKDG method:
~uðmþ1Þ
h :¼ RKDG ~uðmÞh

� �
:

(c) Evaluate e :¼ ~uðmþ1Þ
h �~uðmÞh

��� ���
‘1

and proceed as follows:

(1) If e 6 �, the initial guess for Newton’s method is
~uð1Þh :¼ P‘~uðmþ1Þ
h ;
and the associated vector of polynomial degrees is
k
ð1Þ
RK :¼ PD ~uð1Þh ; k

ðmþ1Þ
RK ; ‘

� �
:

(2) Otherwise, go to step (b).

(iii) Computation of the iterates of Newton’s method:
(a) Set kNT :¼ k‘ and m :¼ 1.
(b) Given the function ~uðmÞh 2 V h;kNT

, compute the next iterate ~uðmþ1Þ
h 2 V h;kNT

by using Newton’s method
~uðmþ1Þ
h :¼ Nð~uðmÞh Þ:
(c) Evaluate e :¼ kFð~uðmþ1Þ
h Þk‘1 and proceed as follows:

(1) If e 6 10�14, we consider ~uðmþ1Þ
h to be the solution of the nonlinear system with polynomials of

degree ‘. Then
(a) If ‘ = 1, set ~uH

h :¼ ~uðmþ1Þ
h and stop.

(b) Otherwise, we consider ~uðmþ1Þ
h as the initial guess for the Newton’s method for solving the

nonlinear system with polynomials of degree ‘ + 1. Thus, we set ~uð1Þh :¼ P‘þ1~uðmþ1Þ
h ,

� :¼ 2 · 10�3, ‘ :¼ ‘ + 1, M :¼ Mð~uðmþ1Þ
h Þ and go to step (a).
(2) If e > 10�14 and m < 10, set m :¼ m + 1 and go to step (b) to compute another iterate.
(3) If e > 10�14 and m = 10, then

(a) If kNT = k‘ and ‘ > 0, we consider that the space V h;kNT
was not suitable for the compu-

tations; we change it and begin anew. Thus, we set kNT :¼ k
ð1Þ
RK, m :¼ 1 and go to step (b).

(b) Otherwise, we consider that the initial guess ~uð1Þh obtained by using the RKDG method in
step (ii) is not suitable and we go back to that step to obtain a better guess. Thus, we set
~uð0Þh :¼ ~uð1Þh , � :¼ �/2, and go to step (ii).
Table 1 shows that the M approximated by our method is indeed very close to the exact value for the six
qualitatively different test problems, see Tables 2 and 3.

Let us summarize the algorithm. For any given problem, we first estimate M by using Algorithm 3 with
uH

h computed with Algorithm 4. Let us remind the reader that the grid we are using here is a uniform grid
of 20 intervals and that we are working with piecewise linear approximations. Thus, the computation of M

is extremely efficient. We can now apply Algorithm 1 to find the approximate solution of the DG method



Table 1
The approximate M and the exact M for 6 test problems

Problem Approximate M Exact M Problem Approximate M Exact M

LS 120.987 124.025 CNS 0 0
CCS 120.927 124.025 NCNS 0 0
NCS 241.941 248.05 CNS2 0 0

Table 2
Smooth solution test problems

Problem Hamiltonian H(p) Right-hand side f(x) Viscosity solution u(x)

LS p (Linear) cos2(px) � psin(2px) cos2(px)
CCS � p2

4p2 (Concave) cos4(px) cos2(px)

NCS p3

8p3 (Nonconvex) sin(2px) + cos3(2p x) sin(2px)

Table 3
Nonsmooth solution test problems

Problem Hamiltonian H(p) Right-hand side f(x) Viscosity solution u(x)

CNS p2

p2 (Convex) �j sinðpðx� p
4ÞÞj þ cos2ðpðx� p

4ÞÞ �j sinðpðx� p
4ÞÞj

NCNS �p4 + 3p2 � 1 (Nonconvex) u(x) + H(u0(x)) � j sinðpðx�p
4ÞÞj

p

CNS2 p2

p2 (Convex) � j sinðpð2x�p
4ÞÞj

2 þ cos2ðpð2x� p
4ÞÞ � j sinðpð2x�p

4ÞÞj
2
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associated to any grid Gh and any polynomial degree k, where the slope limiter used by the RKDG method
is given by Algorithm 2.

2.4. The a posteriori error estimate Uh(uh)

Here we describe our new a posteriori approximate error estimate Uh(uh). This estimate is obtained by com-
bining an a posteriori error estimate obtained by assuming that the viscosity solution is smooth with a localized

version of an a posteriori error estimate for general viscosity solutions. To describe it, we proceed in several
steps. We begin by introducing the error estimate for smooth exact solutions. Then we describe a localized
version of the error estimate obtained in [1]. Finally, we combine these two estimates to obtain Uh(uh).

2.4.1. The a posteriori error estimate Uh(uh) when u is smooth

Assume that the exact solution u is a smooth function and set eu ¼ uh � u; eux ¼ uhx � ux; and
eHðuxÞ ¼ HðuhxÞ � HðuxÞ; here uhx denotes (uh)x. Then, since u is smooth, u + H(ux) � f = 0, and we have that
R ¼ uh þ HðuhxÞ � f

¼ uh þ HðuhxÞ � f � ðuþ HðuxÞ � f Þ
¼ ðuh � uÞ þ ðHðuhxÞ � HðuxÞÞ
¼ eu þ H 0ðuhxÞðuhx � uxÞ þHHðuxÞ

¼ eu þ H 0ðuhxÞðeuÞx þHHðuxÞ;
where
HHðuxÞ ¼ HðuhxÞ � HðuxÞ � H 0ðuhxÞðuhx � uxÞ: ð2:6Þ
Now, since HHðuxÞ ¼ OððeuxÞ
2Þ, it is reasonable to assume that, when eux is small enough,
H 0ðuhxÞðeuÞx þ eu � R � 0:
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In this case, it is reasonable to take the estimate of the error, Uh(uh), as a formally second-order accurate
approximation to the solution U = U(uh) of
H 0ðuhxÞUx þ U� R ¼ 0;
that we compute as follows.

Algorithm 5. (Computation of Uh(uh) for smooth u).

� Step 1. Given the grid Gh ¼ fxigN
i¼0, compute the grid Gh ¼ fyjg

nN
j¼1 by
yði�1Þ�nþ‘ ¼ xi�1 þ ð‘� 1Þðxi � xi�1Þ=ðn� 1Þ;

where n = N * (k + 1), for ‘ = 1, . . .,n and i = 1, . . .,N. Then set

hj :¼ xi � xi�1 for j ¼ ði� 1Þ � nþ ‘ and ‘ ¼ 1; . . . ; n;

Rj :¼ Rðy�j Þ;
H 0j :¼ H 0ðuhxðy�j ÞÞ;

aj�1=2 :¼
0 if

1
2
jH 0j þ H 0j�1j 6 hkþ0:5

j ;

or jH 0jj 6 hkþ0:5
j ;

or jH 0j�1j 6 hkþ0:5
j ;

8>><>>:
e
�

2ðyj�yj�1Þ
H 0

j
þH 0

j�1 otherwise:

8>>>>>><>>>>>>:
bj�1=2 :¼ 1

2
ðRj þ Rj�1Þð1� aj�1=2Þ;

for j = 2, . . .,nN. Let aj�1/2 :¼ 1 for j = in + 1, any i. Here, y�j means the limit from inside of the element.

� Step 2. Set
Uhð0Þ ¼
PnN

m¼2

QnN
‘¼mþ1a‘�1=2

	 

bm�1=2

1�
QnN

‘¼2a‘�1=2

:

� Step 3. Define Uh(yj) by
UhðyjÞ ¼ bj�1=2 þ aj�1=2Uhðyj�1Þ;

for j = 2, . . .,nN.

� Step 4. Set
aj�1=2 :¼
0 if aj�1=2 ¼ 0;

1=aj�1=2 otherwise:

�
bj�1=2 :¼ 1

2
ðRj þ Rj�1Þð1� aj�1=2Þ;
for j = 2, . . .,nN.	 


� Step 5. If

PnN

m¼2

Qm�1

‘¼2
a‘�1=2 bm�1=2

1�
QnN

‘¼2
a‘�1=2

���� ���� 6 jUhð1Þj, set
Uhð1Þ ¼
PnN

m¼2

Qm�1
‘¼2 a‘�1=2

� �
bm�1=2

1�
QnN

‘¼2a‘�1=2

:

� Step 6. If jbj�1/2 + aj�1/2Uh(yj)j 6 jUh(yj�1)j, define Uh(yj�1) by
Uhðyj�1Þ ¼ bj�1=2 þ aj�1=2UhðyjÞ

for j = nN, . . ., 2.

� Step 7. Set Uh :¼ 1.5Uh.
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In all our numerical experiments, we take the number N to be equal to 15. Notice that, since we expect the
error to be equal to zero at most (k + 1) times per element, we need to properly resolve those oscillations; this
is why we compute it at n = N * (k + 1) points in each interval.

Let us justify the fact that the function Uh defined in the second and third steps is in fact a second-order
accurate approximation of the exact solution of the equation under consideration. The exact solution is
UðxÞ ¼ e
�
R x

0

1
H 0ðuhxðsÞÞ

ds
Uð0Þ þ

Z x

0

e
�
R x

s
1

H 0ðuhxðtÞÞ
dt RðsÞ

H 0ðuhxðsÞÞ
ds;
provided, for example, that H 0(uhx) is uniformly away from zero and that 1/H 0(uhx) and R are integrable. As a
consequence, the periodicity condition U(1) = U(0) is fulfilled if and only if
Uð0Þ ¼
R 1

0
e
�
R 1

s
1

H 0ðuhxðtÞÞ
dt RðsÞ

H 0ðuhxðsÞÞ ds

1� e
�
R 1

0

1
H 0 ðuhxðsÞÞ

ds
:

We then see that, indeed, the expression for Uh(0) given in the second step of the algorithm and Uh(1) in the
fifth are second-order accurate approximations to this quantity.

We also know that the exact solution satisfies:
UðyjÞ ¼ e
�
R yj

yj�1

1
H 0ðuhxðsÞÞ

ds
Uðyj�1Þ þ

Z yj

yj�1

e
�
R x

s
1

H 0 ðuhxðtÞÞ
dt RðsÞ

H 0ðuhxðsÞÞ
ds
and we see that the formulae given in the third and sixth steps do define a second-order approximation, as
claimed.

It is also worth mentioning that the two-way sweeping performed in steps 2, 3 and steps 5, 6 gives more
accurate results than any one-way sweeping. Obviously, these sweepings are exactly the same when none of
the aj�1/2’s is zero. Let us show how any single sweep will fail and combining them would succeed to give accu-
rate error estimates by applying the algorithm on the following problem:
HðpÞ ¼ � p2

16p2
; f ðxÞ ¼ cos4ð2pxÞ
which has exact solution cos2(2px). We use DG(P4) method to solve the problem on a uniform mesh of 40
elements. The results are displayed in Fig. 3. We see that, with one sweeping, the error estimate is too big when
H 0 changes sign.

Finally, notice that in the last step, we are setting the approximate estimate of the error Uh(uh) to be 1.5
times the function eu. Notice that if eu were exact, our error estimate Uh(uh) would be 50% bigger than the
optimal value and, as a consequence, the best effectivity index we can obtain is 1.5. However, in our numerical
experiments, we see that effectivity indexes that are smaller than 1.5 are obtained. Without a doubt, this is due
to the fact that eu is the approximate solution of an equation that approximates the error equations. It is thus
reasonable to multiply it by the factor 1.5 to compensate for these approximations and make sure that the
error is actually smaller. Although we do not have a proof of this fact, the extensive numerical results we pres-
ent, both with uniform and with nonuniform grids, show that we always achieve effectivity indexes that are
never smaller than one. This justifies the last step of our algorithm.

2.4.2. The a posteriori error estimate Uh(uh) when u is not smooth

In practice, when the exact solution u is smooth, the use of the above estimate produces very good results.
However, its use cannot be justified whenever the viscosity solution u has kinks. To deal with this case, we
introduce a localized version of the rigorous a posteriori error estimate obtained in [1]. The estimate assumes

that the error is known at the border of an arbitrary subset X and gives an estimate of the error inside X. As the
reader might be expecting, in our setting the set X is nothing but a small region surrounding the kinks of the
viscosity solution. It is important to emphasize that the construction of such a region can be done extremely
well by using monotone schemes, as shown in [4,5]. Since the DG methods we are considering automatically
behave essentially like monotone schemes around the kinks (thanks to the use of the generalized slope limiter),



0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1

a

c

b

d

10-14

10-11

10-8

10-5

10-14

10-11

10-8

10-5

10-14

10-11

10-8

10-5

10-14

10-11

10-8

10-5

Fig. 3. (a) The error estimate after one sweeping from 0 to 1. (b) The error estimate after one sweeping from 1 to 0. (c) The error estimate
after both sweepings as in the algorithm. (d) The exact error.
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it is reasonable to believe that the construction of X should also be done as efficiently regardless of the degree
of the polynomial approximation. Our numerical experiments show that this is actually the case.

Thus, given the set X and the error eu at oX, the estimate gives an upper bound for the following semi-
norms:
ju� vj�;X ¼ sup
x2X
ðuðxÞ � vðxÞÞþ; ju� vjþ;X ¼ sup

x2X
ðvðxÞ � uðxÞÞþ;
where w+” max {0,w}. To state the estimate, we need to introduce the shifted residual,
R�ðu; x; pÞ ¼ uðxÞ þ HðpÞ � f ðx� �pÞ � 1

2
�jpj2;
and the paraboloid Pv,
P vðx; p; j; yÞ ¼ vðxÞ þ ðy � xÞ � p þ j
2
jy � xj2; y 2 R;
where x is a point in R, p is a vector of R, and j is a real number.
We are now ready to describe the a posteriori error estimate.

Theorem 2.2 (A posteriori error estimate). Let u be the viscosity solution of Eq. (1.1) and let v be any continuous

function on R periodic with period 1. Let X be a closed subset of R and suppose the error eu(x) ” uh(x) � u(x) is

given on oX. Then we have that
whX :¼ max
r2f�;þg

ju� vjr;X 6 max
r2f�;þg

inf
�P0

maxfWrðv; �Þ;Urðv; �Þg;
where
Wrðv; �Þ ¼ sup
x2oX;ðxþr�p;pÞ2Arðv;�Þ

r vðxþ r�pÞ � vðxÞ þ euðxÞ½ � � 1

2
�jpj2;

Urðv; �Þ ¼ sup
ðx;pÞ2Arðv;�Þ

ðrRr�ðv; x; pÞÞþ:
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The set Ar(v; �) is the set of elements (x,p) satisfying
ðx; pÞ 2 X n oX;DrvðxÞð Þ [ oX;Brðv; xÞð Þ; ð2:7Þ
rfvðyÞ � P vðx; p; r=�; yÞg 6 0 8y 2 R; ð2:8Þ
where Brðv; xÞ ¼ pjrp � nðxÞ 6 r d
dx
�

vðxÞ � nðxÞ
� �

, and n(x) is the unit outward normal vector of oX at x, d
dx
�

vðxÞ
is the gradient of v(x) at x from inside of X.

Proof. We prove the result for r = �; the proof for the case r = + is similar. Given � > 0, define the auxiliary
function
wðx; yÞ ¼ uðxÞ � vðyÞ � jx� yj2

2�
;

and let ðx̂; ŷÞ 2 X� X be such that
wðx̂; ŷÞP wðx; yÞ 8x; y 2 X:
Such a point exists since X is compact and w is continuous. Set p̂ ¼ x̂�ŷ
�

.
We assume ju � vj�,X > 0, otherwise the result is trivial. In this case, we have
ju� vj�;X ¼ supx2XfuðxÞ � vðxÞg
¼ supx2Xwðx; xÞ
6 sup

x;y2X
wðx; yÞ

¼ wðx̂; ŷÞ ¼ uðx̂Þ � vðŷÞ � jx̂� ŷj2

2�
:

First, we characterize ðŷ; p̂Þ. Since wðx̂; ŷÞP wðx̂; yÞ for all y 2 X, we have that
vðyÞP vðŷÞ þ jx̂� ŷj2

2�
� jx̂� yj2

2�

¼ vðŷÞ þ p̂ � ðy � ŷÞ � jy � ŷj2

2�
:

¼ P vðŷ; p̂;�
1

�
; yÞ:
Note that this implies that p̂ 2 D�vðŷÞ when ŷ 2 XnoX, and �p̂ � nðxÞ 6 �q � nðxÞ for any q ¼ d
dx
�

vðŷÞ when
ŷ 2 oX.

We use A�(v; �) to denote the set of elements (x,p) satisfying
ðx; pÞ 2 ðX n oX;D�vðxÞÞ [ ðoX;B�ðv; xÞÞ and � fvðyÞ � P vðx; p; r=�; yÞg 6 0 8y 2 R;
where B�ðv; xÞ ¼ fpj � p � nðxÞ 6 � d
dx
�

vðxÞ � nðxÞg, and n(x) is the unit outward normal vector of oX at x,
d
dx
�

vðxÞ is the gradient of v(x) at x from inside of X.
We proceed by considering the following two cases.
Case 1. x̂ 2 oX :
wðx̂; ŷÞ ¼ �euðx̂Þ þ vðx̂Þ � vðx̂� �p̂Þ � 1

2
�jp̂j2:
We thus have
ju� vj�;X 6 wðx̂; ŷÞ 6 sup
x2oX;ðx��p;pÞ2A�ðv;�Þ

�½vðx� �pÞ � vðxÞ þ euðxÞ� �
1

2
�jpj2:
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Case 2. x̂ 2 X n oX :
wðx̂; ŷÞ ¼ ½uðx̂Þ þHðp̂Þ � f ðx̂Þ� � vðŷÞ þHðp̂Þ � f ðŷÞ þ f ðŷÞ � f ðx̂Þ þ jx̂� ŷj2

2�

" #
¼ Rðu; x̂; p̂Þ � R��ðv; ŷ; p̂Þ:
Since the mapping x ´ w(x, ŷ) has a maximum at x ¼ x̂, we have that
0 2 Dþx wðx̂; ŷÞ ¼ Dþuðx̂Þ � p̂;
and so p̂ 2 Dþuðx̂Þ. Since u is the viscosity solution, this implies that Rðu; x̂; p̂Þ 6 0 and hence
wðx̂; ŷÞ 6 �R��ðv; ŷ; p̂Þ:

We thus have ju� vj�;X 6 supðy;pÞ2A�ðv;�Þf�R��ðv; y; pÞg. Since these results are true for any �, this completes

the proof. h

To apply Theorem 2.2, we take v to be uh and discretize the nonlinear functionals of the a posteriori error
estimate. The set X = [s,e] over which we evaluate the functionals Ur(Æ, Æ) and Wr(Æ, Æ), is replaced by the follow-
ing finite number of points:
Xh :¼ fs; eg [ fci; 0 6 i < N ½s;e�g;
where ci’s are the midpoints of the intervals contained in the set [s,e] and N[s, e] is the number of intervals
therein.

Another modification to be made in practice is on the values of the auxiliary parameter �. The evaluation of
the functionals in the theorem requires optimization over the set � 2 [0,1). However, we replace [0,1) in
practice by the set
eh ¼ i � E
N E

; 0 6 i 6 NE

� 
;

where E = 50x j ln(1/x)j and NE = 100jln(1/x)j.
Here x is an upper bound for the artificial diffusion coefficient of the numerical scheme under consider-

ation. We take x = Chmin where C is as defined by (2.1c) and hmin = Min{h0, . . .,hN� 1}.
As to the motivation of these discretizations and the fast evaluation of the paraboloid test, that is, the eval-

uation of (2.8), we refer to [1].

2.4.3. The a posteriori error estimate Uh(uh)

We define our a posteriori error estimate by means of the following algorithm:

Algorithm 6 (Computation of Uh(uh)).

� Step 1. Given the approximate solution uh, Algorithm 1 splits the interval [0, 1] as the union of two disjoint
sets Buh and Auh ¼ ½0; 1� � Buh with Buh ¼ [‘i¼1½si; ei� where P0-elements are used on [si,ei].
� Step 2. Compute aj� 1/2 and bj� 1/2 as in Algorithm 5.
� Step 3. Set aj� 1/2 = 1 and bj� 1/2 = 0 on the Buh .
� Step 4. Compute Uh(yj) by using Algorithm 5.
� Step 5. Set Uh :¼ 1.5Uh.
� Step 6. On each [si,ei], i = 1, . . ., ‘ in Buh , compute wh½si;ei� given by Theorem 2.2.
� Step 7. Set (
UhðuhÞðxÞ :¼
UhðuhÞðxÞ if x 2 Auh ;

wh½si ;ei � if x 2 ½si; ei� 	 Buh :
In practice, when the viscosity solution u is smooth, the generalized slope limiter is not used and the set Buh

is empty. This implies that the a posteriori error estimate computed by using Algorithm 6 is exactly the one
given by Algorithm 5. On the other hand, if the viscosity solution has kinks and the approximation is close



1042 Y. Chen, B. Cockburn / Journal of Computational Physics 226 (2007) 1027–1058
enough to it, the slope limiter will be turned on and the set Buh will not be empty anymore. In this case, Step 3
will force the equality eu(si) = eu(ei) and Step 7 will take the a posteriori error estimate on [si,ei] to be the num-
ber w½si ;ei � given by Theorem 2.2. Forcing such equality is somewhat arbitrary, but we feel that the fact that
both quantities should be roughly of the same order justifies this choice. Our numerical experiments show that
the method works well.

2.5. Computing a new grid

Next, we present the technique proposed in [4] to compute a mesh and show how to adapt it to our case.
To describe the way we compute a new grid, we need to introduce an auxiliary mapping that associates a

grid of the domain [0,1] to any given bounded and integrable function C : ½0; 1� ! Rþ. It is defined as follows.
First, we solve the equation
d

dx
N ¼ C in ð0; 1Þ with Nð0Þ ¼ 0: ð2:9Þ
Then, we set
GðCÞ ¼ xj ¼N�1 j
Nð1Þ

n

� �� n

j¼0

; ð2:10Þ
where n is the smallest natural number no less than Nð1Þ; this guarantees that xn = 1. Let us point out that in
[4], the mapping is defined as
GðCÞ ¼ xj ¼N�1ðjÞ
� �n

j¼0
;

tacitly assuming that if n >Nð1Þ, then xn = 1. With this definition, an extremely small interval (xn� 1,1) can
be created which, in our setting, has undesirable consequences.

The modification of a given grid of mesh-size function h is the grid GðC ¼ l=hÞ, where the function l is the
so-called grid-size modification function. We take
l :¼ WðcÞ;

where, for s 2 [xi� 1, xi].
cðsÞ ¼
kUhðuhÞðsÞkL1ðfyjgyj2½xi�1 ;xi �Þ

s

 ! 1
OðsÞ

;

WðxÞ ¼
x; if x P 1:4;

1þ 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10x� 104
p

; if 1 < x < 1:4;
xþ3

4
; if 0 6 x 6 1:

8><>:

Moreover, we set
l :¼ maxf1;WðcÞg;

whenever we consider that our grid is reasonable, i.e., whenever we have that
kð1�WðcÞÞþkL1ð0;1Þ 6 0:035:
Let us briefly mention that whenever l is bigger or smaller than one, the modified grid will have smaller or
bigger elements, respectively, than those of the original grid. A detailed discussion of a very similar choice is
provided in [4]. The main difference between what was done in [4] and what we do here is the definition of c(s).
Here, to take into account that the numerical scheme converges formally, at s, with order OðsÞ that is not nec-
essarily 1, we take the absolute value of the ratio of the a posteriori error estimate to the tolerance to the power
1=OðsÞ. Obviously, OðsÞ ¼ 1 in [4]. In our numerical examples, we set
OðsÞ ¼
k þ 2; if s 2 Auh

k þ 2�min 1; step
6

� �
� ðk þ 1Þ; Otherwise:

(
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Where step is the current number of step of the adaptive method. We see that, close to the kink, OðsÞ is a
number between k + 2 and 1 that goes to 1 gradually as we identify the kink better and better during our adap-
tive procedure. This particular choice can avoid overrefinement during the first several steps when the position
of the kinks has not been well recognized.

2.6. Summary of the method

To end this section, we give a precise description of our adaptive method. We are given the tolerance s and
the polynomial degree of the approximation for Uh, k.

Algorithm 7 (Adaptive algorithm).

� Step 1. Construct the initial grid Gh ¼ fj=20g20
j¼0.

� Step 2. Compute the DG approximation uh on the grid Gh.
� Step 3. Compute the estimate of the error Uh(uh).
� Step 4. If kUhðuhÞkL1 6 s, stop.
� Step 5. Compute the new grid Gh ¼ Gðh=lÞ and go to Step 2.

In step 2, we initialize the DG approximation uh by zero when computing it on the grid Gh in Algorithm 1.
In fact, we only need to do it on the initial grid. On the following grids, we can initialize it by the P0-projection
of the solution on the previous mesh.

The projection P0, from V h;k‘ðG1
hÞ with G1

h ¼ fx1
i g

N1

i¼0 to V h;k0
ðG2

hÞ with G2
h ¼ fx2

i g
N2

i¼0, is defined as follows: for
any function / 2 V h;k‘ðG1

hÞ, we define P0/ 2 V h;k0
ðG2

hÞ as, for any j = 0, . . .,N2 � 1,
P0/jI j
¼ 1

jXjj

Z
Xj

/dx;
where Xj is the smallest union of elements in G1
h that contains Ij ¼ ðx2

j ; x
2
jþ1Þ.

3. Numerical results

3.1. The test problems

We test our adaptive method on problems similar to those used in [4] for the study of the first-order adap-
tive method; see Tables 2 and 3. The solutions of the problems displayed in Table 2 are smooth, and the solu-
tions of the problems in Table 3 have kinks at x = p/8, x = p/4 or x = p/8 + 0.5.

3.2. The effectivity index of the a posteriori error estimate

We display the behavior of the discrete effectivity index
eihðu; uhÞ ¼
kUhðuhÞkL1ðGhÞ

ku� uhkL1ðGhÞ
;

as we refine the grid uniformly in Tables 4 and 5. We see that, independently of the polynomial degree of the
approximation or the problem, the effectivity index remains remarkably constant and fairly close to the best
value of 1.5 when the solution is smooth. We can thus consider that the estimate is reliable.

It is interesting to note that the approximate solutions converges exponentially to the exact solution, see
Fig. 4.

3.3. Results with the adaptive method

Here we display and discuss the performance of the adaptive method. In Tables 6–11, we show the history
of convergence together with
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eisðs; u; uhÞ ¼
s

ku� uhkL1ðGhÞ
; eiadðs; uhÞ ¼

s
UhðuhÞ

;

the numbers of steps needed for convergence and,
complxr ¼
PK

k¼1nk

nK
;

where nk is the number of intervals of the grid of the step k and K is the number of steps needed for conver-
gence. We call this quantity the complexity ratio since the complexity of each step is proportional to the num-
ber of elements of the grid; it is a measure of the efficiency of the adaptive method.

In Figs. 5–10, we plot log10h as a measure of how the grid points are distributed on the domain, error
s and the

mesh modification function l = W(c). In these figures, by the error at the point x we mean
ku� uhkL1ðfyjgyj2½xi�1 ;xi �Þ
;

whenever x 2 (xi� 1,xi). If we plot the actual error at each point yj 2 Gh, we would see a highly oscillatory
function, of course.

From the above mentioned tables and figures we see the following:

� The method enforces a strict control on the error ku� uhkL1ðGhÞ since the effectivity index eis(s;u,uh) is
always bigger than one. Moreover, error/s (see the second column of the figures) stays around 0.5 in most
of the domain.
� The effectivity index eiad (s;uh), which is a measure of the quality of the adaptive method, is very close to the

ideal value of one, independently of the huge variations in the value of the tolerance. This means that the
method is reliable.
� The complexity remains of order one uniformly in the size of the tolerance and the polynomial degree. This

means that the method has optimal complexity.
4
y of convergence for the smooth solution test problems LS, CCS and NCS with uniform meshes

1
Dx LS CCS NCS

iu � uhi eih Order iu � uhi eih Order iu � uhi eih Order

20 3.77e�04 1.50 – 3.15e�04 1.95 – 8.65e�04 1.45 –
40 4.73e�05 1.50 3.00 4.00e�05 1.78 2.98 1.09e�04 1.49 2.99
80 5.92e�06 1.51 3.00 4.99e�06 1.85 3.00 1.37e�05 1.52 3.00
160 7.40e�07 1.50 3.00 6.23e�07 2.08 3.00 1.71e�06 1.57 3.00
320 9.25e�08 1.53 3.00 7.79e�08 2.44 3.00 2.13e�07 1.67 3.00
640 1.16e�08 1.63 3.00 9.73e�09 3.29 3.00 2.67e�08 1.86 3.00
1280 1.45e�09 1.68 3.00 1.22e�09 3.97 3.00 3.33e�09 2.25 3.00

20 5.39e�06 1.50 – 3.61e�05 1.50 – 5.25e�05 1.50 –
40 3.41e�07 1.51 3.98 3.59e�06 1.50 3.33 5.09e�06 1.50 3.37
80 2.14e�08 1.51 3.99 3.50e�07 1.50 3.36 4.88e�07 1.50 3.38
160 1.34e�09 1.53 4.00 3.36e�08 1.50 3.38 3.79e�08 1.50 3.69
320 8.40e�11 1.57 4.00 3.20e�09 1.50 3.39 3.25e�09 1.50 3.54
640 5.54e�12 1.62 3.92 3.05e�10 1.50 3.39 2.75e�10 1.51 3.56

20 7.27e�08 1.49 – 7.21e�08 3.45 – 1.42e�07 1.53 –
40 2.29e�09 1.48 4.99 2.28e�09 3.98 4.98 4.56e�09 1.52 4.96
80 7.18e�11 1.48 5.00 7.17e�11 4.10 4.99 1.43e�10 1.59 4.99
160 2.30e�12 1.52 4.96 2.25e�12 4.50 5.00 4.50e�12 1.76 4.99

20 9.35e�10 1.49 – 8.28e�09 1.48 – 1.52e�08 1.50 –
40 1.48e�11 1.48 5.98 2.16e�10 1.48 5.26 3.40e�10 1.50 5.48
80 2.59e�13 1.41 5.84 5.59e�12 1.48 5.27 7.48e�12 1.50 5.50

u� uhk :¼ ku� uhkL1ðGhÞ.



Table 5
History of convergence for the nonsmooth solution test problems CNS, NCNS and CNS2 with uniform meshes

Deg 1
Dx CNS NCNS CNS2

iu � uhi eih Order iu � uhi eih Order iu � uhi eih Order

1 20 6.43e�02 2.01 – 2.20e�02 4.96 – 3.81e�02 5.98 –
40 3.71e�02 1.99 0.79 1.26e�02 3.41 0.80 3.21e�02 2.43 0.25
80 1.09e�02 2.79 1.77 5.35e�03 5.91 1.24 1.85e�02 1.99 0.79

160 8.70e�03 1.55 0.33 3.21e�03 4.52 0.74 5.45e�03 2.85 1.77
320 4.29e�03 1.90 1.02 1.60e�03 5.36 1.01 4.35e�03 1.95 0.33
640 2.15e�03 2.34 1.00 7.92e�04 4.96 1.01 2.15e�03 3.95 1.02

1280 1.02e�03 4.03 1.08 3.88e�04 4.87 1.03 1.07e�03 2.39 1.00

2 20 9.59e�02 10.6 – 2.21e�02 4.93 – 7.80e�02 2.97 –
40 3.76e�02 1.97 1.35 1.28e�02 3.37 0.79 4.87e�02 20.2 0.68
80 2.32e�02 1.95 0.69 5.30e�03 5.97 1.27 1.88e�02 1.97 1.37

160 8.72e�03 1.25 1.41 3.21e�03 4.51 0.72 1.17e�02 2.20 0.68
320 4.24e�03 1.22 1.04 1.58e�03 5.42 1.02 4.36e�03 1.37 1.42
640 2.19e�03 1.15 0.95 8.07e�04 4.87 0.97 2.12e�03 1.28 1.04

1280 1.59e�03 2.35 0.47 3.93e�04 4.80 1.04 1.10e�03 2.08 0.95

3 20 6.43e�02 2.22 – 2.19e�02 4.96 – 7.34e�02 3.37 –
40 3.82e�02 1.93 0.75 1.30e�02 3.32 0.76 3.21e�02 2.46 1.19
80 2.34e�02 2.07 0.71 5.35e�03 5.91 1.28 1.91e�02 1.93 0.75

160 8.72e�03 2.39 1.42 3.21e�03 4.52 0.74 5.46e�03 3.19 1.81
320 4.30e�03 2.39 1.02 1.60e�03 5.36 1.01 4.36e�03 3.86 0.33
640 2.21e�03 2.27 0.96 8.10e�04 4.85 0.98 2.15e�03 2.50 1.02

1280 1.04e�03 2.39 1.09 3.94e�04 4.79 1.04 1.11e�03 2.33 0.96

4 20 6.45e�02 2.22 – 2.20e�02 4.94 – 7.81e�02 5.84 –
40 5.08e�02 1.18 0.35 1.29e�02 3.33 0.77 4.78e�02 3.07 0.71
80 1.09e�02 2.14 2.22 5.33e�03 5.93 1.28 2.58e�02 2.31 0.89

160 8.78e�03 2.36 0.31 3.22e�03 4.49 0.73 5.45e�03 2.48 2.24
320 4.30e�03 3.94 1.03 1.60e�03 5.36 1.01 4.39e�03 3.84 0.31
640 2.21e�03 1.16 0.96 8.08e�04 4.86 0.98 2.15e�03 3.94 1.03

1280 1.05e�03 2.37 1.07 3.97e�04 4.75 1.02 1.10e�03 1.21 0.96

Here ku� uhk :¼ ku� uhkL1ðGhÞ.
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Fig. 4. Exponential convergence of the method on uniform grid.
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� The first column of the figures shows that the grid points have a similar distribution on the domain inde-
pendently of the tolerance.
� The mesh modification function l = W(c) is very close to be identically equal to 1.

Therefore, we conclude that the adaptive method is reliable and extremely efficient uniformly in the poly-
nomial degree k, which varied from 1 to 4, and in the tolerance s, which varied from 10�1 to 10�11 in the tables
and from 10�5 to 10�10 in the figures.



Table 6
History of convergence of the adaptive method for the problem LS

Prob Deg s n iu � uhi Order eis(s;u,v) eiad (s;v) Steps Complxr

LS 1 1.0e�04 32 6.47e�05 – 1.55 1.04 3 2.56
1.0e�05 72 6.05e�06 2.92 1.65 1.10 4 3.14
1.0e�06 151 6.71e�07 2.97 1.49 1.01 3 2.03
1.0e�07 329 7.91e�08 2.75 1.27 1.01 4 2.94
1.0e�08 708 8.96e�09 2.84 1.12 1.00 5 3.88

2 1.0e�05 20 5.39e�06 – 1.86 1.24 1 1.00
1.0e�06 31 6.44e�07 4.85 1.55 1.05 2 1.65
1.0e�07 56 6.13e�08 3.98 1.63 1.08 3 2.30
1.0e�08 102 6.72e�09 3.69 1.49 1.00 3 2.11
1.0e�09 185 6.94e�10 3.81 1.44 1.00 3 2.00
1.0e�10 334 7.10e�11 3.86 1.41 1.01 4 2.93
1.0e�11 613 7.16e�12 3.78 1.40 1.02 5 3.87

3 1.0e�07 21 6.09e�08 – 1.64 1.09 2 1.95
1.0e�08 30 6.63e�09 6.22 1.51 1.00 2 1.67
1.0e�09 50 6.70e�10 4.49 1.49 1.01 3 2.32
1.0e�10 81 6.68e�11 4.78 1.50 1.01 3 2.15
1.0e�11 133 6.50e�12 4.70 1.54 1.03 3 2.02

4 1.0e�08 20 9.35e�10 – 10.7 7.20 1 1.00
1.0e�09 23 5.05e�10 4.40 1.98 1.35 2 1.87
1.0e�10 31 5.68e�11 7.32 1.76 1.19 3 2.58
1.0e�11 43 6.63e�12 6.57 1.51 1.09 3 2.44

Here ku� uhk :¼ ku� uhkL1ðGhÞ.

Table 7
History of convergence of the adaptive method for problem CCS

Prob Deg s n iu � uhi Order eis(s;u,v) eiad (s;v) Steps Complxr

CCS 1 1.0e�04 31 6.61e�05 – 1.51 1.02 3 2.61
1.0e�05 64 6.28e�06 3.25 1.59 1.04 4 3.31
1.0e�06 142 6.10e�07 2.93 1.64 1.04 4 3.11
1.0e�07 300 6.08e�08 3.08 1.64 1.02 5 4.03
1.0e�08 669 6.33e�09 2.82 1.58 1.02 9 8.02

2 1.0e�05 22 6.22e�06 – 1.61 1.07 4 3.91
1.0e�06 39 5.63e�07 4.19 1.78 1.19 5 4.31
1.0e�07 70 5.89e�08 3.86 1.70 1.14 6 5.04
1.0e�08 124 6.20e�09 3.94 1.61 1.08 7 5.92
1.0e�09 223 6.23e�10 3.92 1.61 1.08 8 6.84
1.0e�10 393 6.40e�11 4.01 1.56 1.05 10 8.91
1.0e�11 713 6.29e�12 3.90 1.59 1.06 9 7.80

3 1.0e�07 22 4.87e�08 – 2.05 1.39 3 2.91
1.0e�08 31 6.19e�09 6.02 1.62 1.12 2 1.65
1.0e�09 50 5.80e�10 4.95 1.73 1.15 5 4.28
1.0e�10 80 6.51e�11 4.65 1.54 1.02 4 3.16
1.0e�11 127 6.57e�12 4.96 1.52 1.01 4 3.07

4 1.0e�08 19 5.88e�09 – 1.70 1.15 2 2.05
1.0e�09 25 5.92e�10 8.37 1.69 1.14 4 3.68
1.0e�10 37 5.50e�11 6.06 1.82 1.23 6 5.22
1.0e�11 53 5.73e�12 6.29 1.75 1.18 6 5.09

Here ku� uhk :¼ ku� uhkL1ðGhÞ.
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Table 8
History of convergence of the adaptive method for problem NCS

Prob Deg s n iu � uhi Order eis(s;u,v) eiad(s;v) Steps Complxr

NCS 1 1.0e�04 39 7.16e�05 – 1.40 1.11 4 3.41
1.0e�05 86 6.94e�06 2.95 1.44 1.11 4 3.08
1.0e�06 179 7.41e�07 3.05 1.35 1.05 4 3.02
1.0e�07 385 7.06e�08 3.07 1.42 1.05 7 6.05
1.0e�08 904 6.26e�09 2.84 1.60 1.02 7 5.82

2 1.0e�05 28 6.56e�06 – 1.52 1.02 5 4.68
1.0e�06 50 6.04e�07 4.11 1.66 1.11 4 3.26
1.0e�07 89 6.57e�08 3.85 1.52 1.02 6 5.07
1.0e�08 162 6.52e�09 3.86 1.53 1.02 4 2.96
1.0e�09 293 6.45e�10 3.90 1.55 1.02 4 2.89
1.0e�10 536 6.27e�11 3.86 1.60 1.02 4 2.82
1.0e�11 992 6.21e�12 3.76 1.61 1.03 4 2.75

3 1.0e�07 25 5.73e�08 – 1.74 1.17 4 3.76
1.0e�08 34 6.07e�09 7.30 1.65 1.10 3 2.56
1.0e�09 56 5.98e�10 4.65 1.67 1.12 4 3.25
1.0e�10 91 6.63e�11 4.53 1.51 1.01 4 3.09
1.0e�11 149 5.26e�12 5.14 1.90 1.16 5 3.96

4 1.0e�08 21 6.19e�09 – 1.62 1.08 3 2.95
1.0e�09 29 6.36e�10 7.05 1.57 1.05 5 4.62
1.0e�10 43 5.51e�11 6.21 1.82 1.21 6 5.19
1.0e�11 61 6.49e�12 6.12 1.54 1.03 4 3.20

Here ku� uhk :¼ ku� uhkL1ðGhÞ.

Table 9
History of convergence of the adaptive method for problem CNS

Prob Deg s n iu � uhi Order eis(s;u,v) eiad (s;v) Steps Complxr

CNS 1 1.0e�01 17 4.78e�03 – 20.9 1.25 2 2.18
1.0e�02 20 2.68e�03 3.55 3.72 1.07 5 5.25
1.0e�03 39 2.60e�04 3.50 3.85 1.08 5 4.33
1.0e�04 96 7.13e�05 1.43 1.40 1.12 6 4.58
1.0e�05 224 6.16e�06 2.89 1.62 1.09 11 9.03

2 1.0e�01 17 1.94e�02 – 5.15 1.98 3 3.29
1.0e�02 20 5.78e�04 21.6 17.3 1.10 5 5.50
1.0e�03 42 7.24e�04 �0.30 1.38 1.29 5 4.14
1.0e�04 73 5.00e�05 4.84 2.00 1.01 7 5.89
1.0e�05 197 8.70e�06 1.76 1.15 1.00 6 4.50

3 1.0e�01 17 2.71e�03 – 36.9 1.61 2 2.18
1.0e�02 14 3.96e�03 1.96 2.52 1.17 8 9.64
1.0e�03 32 2.54e�04 3.32 3.93 1.73 9 7.41
1.0e�04 44 3.80e�05 5.97 2.63 1.19 9 8.45
1.0e�05 112 4.10e�06 2.38 2.44 2.18 7 4.64

4 1.0e�01 17 4.17e�02 – 2.40 1.39 3 3.24
1.0e�02 21 1.57e�03 15.5 6.38 3.06 8 7.48
1.0e�03 37 2.76e�04 3.07 3.62 1.07 7 5.68
1.0e�04 53 2.80e�05 6.36 3.57 1.01 7 5.13
1.0e�05 127 3.37e�06 2.43 2.97 1.10 7 3.94

Here ku� uhk :¼ ku� uhkL1ðGhÞ.
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Table 10
History of convergence of the adaptive method for problem NCNS

Prob Deg s n iu � uhi Order eis(s;u,v) eiad (s;v) Steps Complxr

NCNS 1 1.0e�01 19 1.18e�02 – 8.48 1.07 2 2.05
1.0e�02 29 2.53e�03 3.64 3.95 1.21 6 5.69
1.0e�03 70 2.21e�04 2.77 4.52 1.38 7 5.81
1.0e�04 195 6.10e�05 1.26 1.64 1.05 7 5.03
1.0e�05 1015 6.18e�06 1.39 1.62 1.07 7 4.46

2 1.0e�01 19 1.25e�02 – 8.00 1.05 2 2.05
1.0e�02 28 9.53e�04 6.64 10.5 1.20 5 4.50
1.0e�03 69 2.80e�04 1.36 3.57 1.13 8 6.19
1.0e�04 186 1.92e�05 2.70 5.20 1.17 8 5.17
1.0e�05 588 8.26e�07 2.73 12.1 1.20 8 4.37

3 1.0e�01 18 1.87e�02 – 5.33 1.24 2 2.11
1.0e�02 25 2.00e�03 6.81 4.99 1.19 7 6.72
1.0e�03 49 6.59e�05 5.07 15.2 1.17 9 7.67
1.0e�04 116 6.33e�06 2.72 15.8 1.15 8 5.72
1.0e�05 248 2.01e�06 1.51 4.97 2.38 7 4.35

4 1.0e�01 19 1.29e�02 – 7.75 1.05 2 2.05
1.0e�02 25 1.45e�03 7.98 6.92 1.20 7 6.36
1.0e�03 57 2.22e�04 2.27 4.50 1.03 7 4.81
1.0e�04 105 1.17e�05 4.82 8.55 1.21 9 6.13
1.0e�05 186 1.66e�06 3.41 6.02 1.29 9 6.28

Here ku� uhk :¼ ku� uhkL1ðGhÞ.
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Let us point out that the grids produced by the method are very smooth in most of the domain. Indeed, in
Figs. 11 and 12, where we display the logarithm of the ratio of the size of two consecutive intervals, we can see
that it is very close to zero in most of the domain.
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Finally, in Tables 12–14, We show that the method can capture the kinks efficiently. The distance between
the approximate position of the kink and the exact value is, roughly speaking, of the same order as the
tolerance. So is size of the union of the intervals that capture the kinks.
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Table 11
History of convergence of the adaptive method for problem CNS2

Prob Deg s n iu � uhi Order eis(s;u,v) eiad(s;v) Steps Complxr

CNS2 1 1.0e�01 19 3.86e�02 – 2.59 1.05 3 3.11
1.0e�02 40 5.91e�03 2.52 1.69 1.01 6 4.85
1.0e�03 88 7.87e�04 2.56 1.27 1.09 9 8.55
1.0e�04 200 6.62e�05 3.02 1.51 1.24 8 7.99
1.0e�05 444 6.86e�06 2.84 1.46 1.00 7 6.66

2 1.0e�01 21 4.23e�02 – 2.36 1.07 3 2.95
1.0e�02 43 4.66e�03 3.08 2.15 1.06 5 4.33
1.0e�03 88 5.42e�04 3.00 1.85 1.04 7 5.36
1.0e�04 144 5.82e�05 4.53 1.72 1.35 8 6.34
1.0e�05 352 3.82e�06 3.05 2.62 1.17 9 7.91

3 1.0e�01 25 4.23e�02 – 2.37 1.01 3 2.68
1.0e�02 46 5.05e�03 3.48 1.98 1.08 6 4.89
1.0e�03 63 4.13e�04 7.96 2.42 1.08 8 6.75
1.0e�04 117 4.60e�05 3.55 2.18 1.01 8 6.97
1.0e�05 238 3.94e�06 3.46 2.54 1.23 7 4.94

4 1.0e�01 25 3.12e�02 – 3.21 1.09 5 4.52
1.0e�02 43 4.08e�03 3.75 2.45 1.34 8 5.74
1.0e�03 105 4.54e�04 2.46 2.20 1.10 9 6.90
1.0e�04 115 4.96e�05 24.3 2.02 1.37 8 6.13
1.0e�05 195 4.49e�06 4.55 2.23 1.27 8 5.15

Here ku� uhk :¼ ku� uhkL1ðGhÞ.
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Table 12
Kink-capturing for the nonsmooth solution test problems CNS

s Deg jei�si j
s

siþei
2

error
s Ni Deg jei�si j

s
siþei

2
error

s Ni

1e�1 1 1.64 0.790 4.26e�02 4 3 1.64 0.789 3.90e�02 4
1e�2 1.76 0.785 4.64e�02 4 1.16 0.783 2.14e�01 4
1e�3 2.16 0.785 9.32e�03 6 1.24 0.785 2.68e�02 7
1e�4 1.51 0.785 1.38e�02 6 1.25 0.785 1.60e�01 7
1e�5 1.12 0.785 8.77e�02 6 1.21 0.785 3.24e�01 6

1e�1 2 0.88 0.806 2.06e�01 4 4 1.17 0.767 1.88e�01 4
1e�2 2.50 0.783 2.49e�01 5 1.02 0.784 1.24e�01 5
1e�3 2.41 0.785 5.46e�02 5 1.56 0.785 1.02e�01 5
1e�4 1.47 0.785 2.46e�02 7 2.21 0.785 1.04e�01 7
1e�5 1.69 0.785 2.23e�03 8 1.73 0.785 8.62e�02 9

Here, [si,ei]
0s are the sets containing kinks, error :¼ j siþei

2 � exact position of the kinkj and Ni is the number of elements covering [si,ei].

Table 13
Kink-capturing for the nonsmooth solution test problems NCNS

s Deg jei�si j
s

siþei
2

error
s Ni Deg jei�si j

s
siþei

2
error

s Ni

1e�1 1 2.35 0.786 9.24e�03 6 3 2.52 0.774 1.15e�01 6
1e�2 2.38 0.785 1.69e�02 7 4.07 0.784 1.13e�01 10
1e�3 3.06 0.785 4.83e�01 10 3.76 0.786 1.32e�01 13
1e�4 6.99 0.785 7.17e�01 24 4.58 0.785 3.19e�01 18
1e�5 46.1 0.785 1.15e+00 177 3.17 0.785 1.00e+00 12

1e�1 2 2.39 0.783 1.98e�02 6 4 2.41 0.783 2.25e�02 6
1e�2 4.87 0.785 4.62e�03 8 3.99 0.786 2.14e�02 10
1e�3 3.54 0.785 5.08e�02 12 5.33 0.785 1.33e�02 13
1e�4 4.73 0.785 8.85e�02 20 4.61 0.785 2.60e�01 19
1e�5 3.12 0.785 4.85e�02 16 4.14 0.785 1.09e�01 20

Here, [si,ei]
0s are the sets containing kinks, error :¼ j siþei

2 � exact position of the kinkj and Ni is the number of elements covering [si,ei].

Table 14
Kink-capturing for the nonsmooth solution test problem CNS2

Deg s CNS2 kink1 CNS2 kink2
jei�si j

s
siþei

2
error

s Ni
jei�si j

s
siþei

2
error

s Ni

1 1e�1 0.83 0.383 9.29e�02 3 0.83 0.897 4.49e�02 3
1e�2 2.58 0.396 3.49e�01 10 3.15 0.899 6.43e�01 10
1e�3 0.98 0.393 7.69e�02 5 1.43 0.893 3.24e�01 4
1e�4 1.55 0.393 1.26e�01 5 1.38 0.893 1.12e�01 6
1e�5 13.2 0.393 1.21e+00 71 10.8 0.893 4.52e�01 47

2 1e�1 1.16 0.392 3.33e�03 4 0.81 0.892 6.70e�03 3
1e�2 1.24 0.394 1.22e�01 5 1.55 0.892 6.94e�02 6
1e�3 1.88 0.393 3.12e�01 9 1.68 0.893 5.11e�02 8
1e�4 1.18 0.393 2.23e�02 6 1.21 0.893 5.40e�02 6
1e�5 1.46 0.393 1.54e�01 8 1.12 0.893 1.43e�01 8

3 1e�1 0.82 0.391 1.32e�02 3 0.82 0.905 1.19e�01 3
1e�2 2.13 0.395 1.96e�01 7 2.28 0.893 1.89e�02 8
1e�3 2.16 0.393 5.66e�02 10 2.55 0.893 2.11e�01 10
1e�4 2.60 0.393 4.30e�01 12 2.49 0.893 5.11e�01 10
1e�5 1.46 0.393 2.82e�01 7 1.20 0.893 2.10e�01 7

4 1e�1 1.02 0.397 4.24e�02 6 0.95 0.888 5.13e�02 6
1e�2 1.24 0.392 4.30e�02 9 1.91 0.892 7.68e�02 9
1e�3 1.56 0.393 2.43e�02 7 1.50 0.893 1.34e�01 8
1e�4 1.81 0.393 6.05e�02 5 0.81 0.893 7.98e�02 5
1e�5 1.51 0.393 8.05e�02 5 0.91 0.893 9.98e�02 5

Here, [si,ei]
0s are the sets containing kinks, error :¼ j siþei

2 � exact position of the kinkj and Ni is the number of elements covering [si,ei].
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Fig. 13. Comparison of computational complexity: Uniform (left column) and adaptive (right column) refinement.
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3.4. Adaptivity versus uniform refinement

Here we compare the uniform and the adaptivity refinements. In Fig. 13, we see that it is better to use
higher degree polynomials than to use finer mesh. This is especially the case for adaptive refinement since
the lines are more spread out. This shows that the adaptive method is very efficient.

In Figs. 14–19, we see that the adaptive refinement is obviously better than uniform refinement, since, to
obtain the approximate solution with a given accuracy, the adaptive refinement always uses less intervals. Fur-
thermore, the adaptive refinement method converges significantly faster than the uniform refinement for CCS
and NCS. Let us end by pointing out that it is remarkable that, in the cases when the scheme converges sub-
optimally with uniform refinement, it converges optimally with adaptive refinement.

4. Concluding remarks

In this paper, we have proposed a new a posteriori error estimate for approximations to the viscosity solu-
tion of a model steady state Hamilton–Jacobi equation which we used to devise an adaptive method for com-
puting these approximations. The error estimate has been shown to be sharp and the adaptive method based
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Fig. 19. Comparison of convergence rates: Uniform (solid line) and adaptive (dashed line) refinement for smooth solution test problem
CNS2.
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on it to be able to achieve a rigorous error control with optimal complexity uniformly in the tolerance s and
the polynomial degree k of the approximation even in the presence of kinks in the viscosity solution.

The extension of this adaptive algorithm to the multi-dimensional problems constitutes the subject of ongo-
ing work.
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